
T H
 E

Welcome to...

http://www.youtube.com/watch?v=_JVQOiw_OUU

A robot is a programmable
mechanical device that can
perform tasks and interact with its
environment, without the aid of
human interaction

CONTENTS TREE

II. How to Build
A. Structure

1. Metal
2. Screws
3. Nuts
4. Standoffs
5. Additional Topics in Structure

B. Motion
1. The Square Shaft
2. Actuators
3. Spacers & Collars
4. Gears and Wheels
5. Additional Topics in Motion

I. How to Plan
A. Draft a Design Brief
B. Brainstorm
C. The Technical Design Review System

1. Author Design Docs
2. Discuss

III. How to Program
A. RobotC and the Cortex Microcontroller
B. VEX Code Studio and the V5 Brain

C. Sensorial
1. Analog vs. Digital
2. Primitive vs. “Smart” Hardware
3. The Microcontroller
4. The Cortex Microcontroller
5. Wiring Up the Cortex Microcontroller
6. The V5 Robot Brain
7. Wiring Up the V5 Robot Brain
8. Bumper Switch
9. Limit Switch

10. Ultrasonic Sensor
11. Light Sensor

12. Potentiometer
13. Optical Shaft Encoder
14. V5 “Smart” Motor
15. V5 Vision Sensor
16. Sense, Plan, Act (SPA)
17. Programming the Robot

1. How to Plan

The Design Process
● Create a Design Brief

(shown on the next slide)

● Research
● Brainstorm
● Select an approach

● Create detailed design
solution (design doc)

● Create a technical
drawing

● Construct the robot
● Program robot behavior
● Iterative development

● See if the solution actually
works

[2][1]

https://curriculum.vexrobotics.com/curriculum/intro-to-engineering.html
https://www.pltw.org/

DRAFT A DESIGN BRIEF.

Problem Statement
Robotic Engineers need a quick and easy way to confirm the
working functionality of all programmable robotic components
before they are deployed on a project.

Design Statement
Design a tool that can accomodate all common programmable
robotic components including motors for proper testing of
functionality.

Criteria
1. Robust
2. Reusable
3. Expandable

The problem statement clearly and
concisely identifies the problem.

A problem statement must never imply
or state a solution. The solution is not

the problem.

The design statement challenges the
engineer to take action to address the

need and to solve the problem.

A good design statement should not
unintentionally bias the engineer’s
creative thought process by using

terminology that suggests an already
existing solution.

Free-Form Brainstorming Method

Rules
● No criticism allowed
● Work for quantity
● Welcome piling-on
● Allow free-for-all

Dysfunctions
● Utilizing a poor design brief
● Assuming there is only one right answer
● Getting hooked on the first solution
● Considering ideas from only one or two team

members
● Feeling too anxious to finish
● Becoming frustrated by lack of success
● Getting hooked on a solution that almost works

BRAINSTORM.

A new engineer will change the code and break
something because they don’t know the context that came
before; engineers will overlap, working on similar
problems without realizing it; and significant time
(particularly for the senior engineers untangling the mess)
will be wasted.

The Technical Design Review System has been the
most successful method of correspondence at Google. It
uses design documents and discussions for keeping
engineering teams healthy, communicating clearly, and
effective even as they absorb more people and projects.

SYSTEM
THE TECHNICAL DESIGN REVIEW

Design DOC Design Review

Design DOC Design Review

Design DOC Design Review

Design DOC Design Review

SOLUTION

[3]

https://firstround.com/review/making-engineering-team-communication-clearer-faster-better/

Example Design Doc

AUTHOR DESIGN DOCS.

Design documents describe, scope, and approve projects or features.

As a team gets bigger and
starts working on multiple
facets of a product, the
right hand stops knowing
everything the left hand is
doing. Code and systems
can conflict if people aren’t
able to understand
everything that’s going on.
Design docs serve as a
single place that can be
discussed, consulted and
understood team-wide.

If catalogued historically,
they can be the best way
for new engineers to get
up to speed on why a
product or feature was
built, why it operates a
certain way, what
experiments were tried,
and why certain decisions
were made.

TE
C

H
N

IC
A

L
SK

ET
C

H
B

A
C

K
G

R
O

U
N

D

D
ES

IG
N

 G
O

A
LS

SY
ST

EM
 D

IA
G

R
A

M
D

ES
IG

N
 S

U
M

M
A

RY

D
ES

IG
N

 D
ET

A
IL

S

TR
A

D
EO

FF
S

This format acts as an important forcing function for an engineer to have conversations with other
members of the team who may be impacted or have input. As a byproduct, communication flows better,
bad ideas get weeded out sooner, and any negative surprises get nipped in the bud.

Background
Background on the problem you're solving. Why does
it need to be solved? What other systems, features or
products touch it? Who should be involved
throughout?

Design goals
Requirements and goals of the project. This should
also include numbers like traffic assumptions, usage,
uptime requirements, etc.

System diagram
Diagram of all the binaries, databases and third-party
services that this design touches. Having a visual
helps many folks get the high-level picture and
understand what's being impacted a lot more easily.

Design summary
Summary of the solution in a paragraph or two. This should
not go on too long; it’s meant to paint a quickly and easily
accessible picture of what’s being built.

Design details
Where the actual specifics of the design are listed out. This
can include a variety of things from detailing
subcomponents, code locations, testing strategies,
internationalization, scaling tactics, etc.

Tradeoffs made
This is a great place for disclaimers on why certain choices
are being made, what any negative implications might look
like, limitations being taken into account, any technical debt
that might be earned along the way, and changes that may
need to be made in the future as a result.

DISCUSS.

Once a design document has been completed, it’s time for its presentation.
First, choose a moderator and note taker for the discussion. They should be neutral parties with no emotional stake in

what’s be presented (but an above average aptitude for guiding and following conversations).
Then, send out the design doc along with a blank Google doc for questions and comments. The questions will be the

agenda of the review and allow the optimization of people’s time by diving straight into the issues.

“Everyone is welcome to sit and listen, but there's no talking in the meeting unless you’ve read the design
doc. The moderator will jump in and cut off questions if the answer is in the doc. We do this so we don't
waste people's time. We have X people in the room, so let’s make the most of it.”

As a consequence of this rule, many people will skim through the doc in the minutes right before the meeting
— better late than never.

“We're here to give the next 15 minutes to this product/feature with all of our attention. You'll appreciate
people doing the same for you when you present a design doc in the future.”

“The moderator will keep things moving and might ask for specific discussions to be followed up offline.
Again, this is to make the most of the group's time. Hold non-on-topic questions until the end, but feel free to
jump in with any questions that pertain to the current discussion.”

2. How to Build

THE ROBOT DESIGN SYSTEM

}Structure

Motion

Sensorial

Subsystem

Subsystem

Subsystem

STRUCTURE.

The Structural
Subsystem of the
robot is responsible
for physical
support. It holds
everything in place,
and is, in effect, the
durable “skeleton”
of the robot to
which all the other
subsystems are
attached.

Structure
The parts in the Structure Subsystem form the base of every robot. These parts are the “skeleton” of

the robot to which all other parts are attached. This subsystem consists of all the main structural
components in the Design System including all the metal components and hardware pieces. These pieces
connect together to form the “skeleton” or frame of the robot.

Righ
t A

ng
le

C-Channel

2
H

ol
e

3
H

ol
e

5
H

ol
e

Ch
as

sis
 R

ai
l Bar Plate

Metal

[3]

https://www.vexrobotics.com/vexedr/products/accessories/structure

Structure

Metal components can be directly attached together using 8-32 screws and nuts. Screws come in a
variety of lengths and can be used to attach multiple thicknesses of metal together, or to mount other
components onto structural pieces.

Screws

8-32 Screws

Size 8-32

 The primary screws used to build robot structure.

Size 6-32

 Smaller screws which are used for special cases like mounting
legacy motors and motion subsystem components.

Structure
When using screws to attach things together, there are three types of nuts which can be used.

Nuts

Nylock
Nut
Have a plastic insert in them which
will prevent them from unscrewing.

These nuts will not come off due to
vibration or movement.

Always use on moving components.

KEPS
Nut
Have a ring of “teeth” on one side of
them. These teeth will grip the piece they
are being installed on.

These nuts are installed with the teeth
facing the structure.

Regular
Nut
Have no locking feature.

May loosen up over time, especially
when under vibration or movement.

Very thin and can be used in some
locations where it is not practical to
use a Nylock or KEPS nut.

Structure
Components can also be offset from

each other using 8-32 threaded standoffs.
Standoffs come in a variety of lengths and
work great for mounting components as well
as for creating structural beams.

Standoffs

8-38 Standoffs

When designing a robot’s structure, it is important to think about making it strong and robust while
still trying to keep it as lightweight as possible. Sometimes overbuilding can be just as detrimental as
underbuilding.

The frame is the skeleton of the robot and should be designed to be integrated cleanly with the robot’s
other components. The overall robot design should dictate the chassis, frame, and structural design; not
vice-versa.

Design is an iterative process; experiment to find out what works best for a given robot.

Typical use case for standoffs

StructureADDITIONAL TOPICS IN STRUCTURE

Center of Gravity

Support Polygon

Achieving Stability

Exposure & Vulnerability

Center of Gravity

The “average position” of all the weight on the robot.
Because it is an average of both weight and position,
heavier objects count more than lighter ones in
determining where the center of gravity is, and pieces
that are farther out count more than pieces that are near
the middle.

Support Polygon

The imaginary polygon formed by connecting the
points where your robot touches the ground (usually the
wheels). It varies by design, but there is always one
support polygon in any stable configuration.

Stability

The robot will be most stable when the center of gravity
is centered over the support polygon.

Inappropriate center of gravity
The robot’s center of gravity is no longer over the support polygon.
The robot falls over as soon as it starts the ramp.

The Center of
Gravity is higher
because of the
new weight added
to the top of the
robot

Appropriate center of gravity
The robot’s center of gravity
is closer to the ground.

The Center of Gravity is
now lower because the
weight is mounted lower

Exposure & Vulnerability

Robot components that can be damaged are well shielded and inside robot structure. Route
wires inside the robot and away from all moving components.

MOTION.

The Motion Subsystem of
the robot is responsible
for exactly that, motion. It
includes both the motors
that generate motion, and
the wheels and gears that
transfer and transform
that motion into the
desired forms. With the
Structural Subsystem as
the robot’s skeleton, the
Motion Subsystem is its
muscle.

MotionThe Square Shaft

Most of the motion components use a square hole in their hub which fits
tightly on square shafts. This square hole – square shaft system transmits torque.

Gear and Shaft

The square shaft has rounded corners which allow it to spin
easily in a round hole. This allows the use of simple bearings made
from Delrin (a slippery plastic). The Delrin bearing will provide a
low-friction piece for the shafts to turn in.

Delrin Bearing

MotionActuators

The key component of any motion system is an
actuator. An actuator is something which causes a
mechanical system to move. There are two types of
actuators: motors and servos. Both of them have
different use cases.

Each motor and servo comes with a square
socket in its face, designed to connect to the square
shafts. By simply inserting a shaft into this socket it is
easy to transfer torque directly from a motor into the
rest of the Motion Subsystem

An Actuator (Both appear the same)

ServoMotor
A servo rotates its
shaft to a set angular
position, between 0
and 120 degrees and
holds it there for as
long as it’s receiving
power.

A standard motor
spins its shaft around
and around for as
long as it’s receiving
power.

PROTECTING ACTUATORS FROM ABNORMAL SHOCK-LOADS

Gears can break in some applications when an actuator is under significant load,
over a short duration of time (a shock-load). Equipping the actuator with a clutch
will prevent this from happening when an abnormal shock-load is applied. The
clutch will absorb some of the energy in these situations by “popping” and giving
way. This will protect the actuator.

MotionSpacers & Collars

The Motion Subsystem also
contains parts designed to keep pieces
positioned on a shaft. These pieces
include spacers and collars.
Collars slide onto a shaft, and can be
fastened in place using a setscrew.
Before tightening the setscrew, it is
important to slide the Collars along the
square shafts until they are next to a fixed
part of the robot so that the collar
prevents the shaft from sliding back and
forth

MotionGears & Wheels

 The primary way to transfer motion is through the
use of spur gears. Spur gears transfer motion
between parallel shafts, and can also be used to
increase or decrease torque through the use of gear
ratios.

 The last step in the drive train (series of gears
transferring torque for the purpose of mobility),
after the motors and gears, is the wheels.

Bigger tires give you slower acceleration, while
smaller tires give you faster acceleration.

MotionADDITIONAL TOPICS IN MOTION

Speed vs. Torque

Gear Ratios

Compound Gear Ratios

Gear Ratios With Non-Gear Systems

Idler Gears

Lifts

Linear Motion

Speed vs. Torque

Because a motor can only generate a set amount of power, there is an inherent trade-off
between Torque—the force with which a motor can turn a wheel—and Speed—the rate at which
a motor can turn a wheel.

The exact configuration of torque and speed is usually set using gears. By putting different
combinations of gears between the motor and the wheel, the speed-torque balance will shift.

Gear Ratios

Gear ratio can be thought of as a
“multiplier” on torque and a “divider” on
speed. A gear ratio of 2:1 would yield
twice as much torque as a gear ratio of
1:1, but only half as much speed.

Gear ratio is a ratio of the number of
teeth on a“driven” gear to the number of
teeth on its “driving” gear.

Compound Gear Ratios

Compound gears are formed when two or more gears are on the same axle. In a compound
gear system, there are multiple gear pairs. Each pair has its own gear ratio, but the pairs are
connected to each other by a shared axle.

The resulting compound gear system still has a driving gear and a driven gear, and still has
a gear ratio (now called a “compound gear ratio”).

The compound gear ratio between the driven and driving gears is then calculated by
multiplying the gear ratios of each of the individual gear pairs.

Gear Ratios With Non-Gear Systems

Belt or chain drives are often preferred over gears when torque is needed to be transferred
over long distances.

When the number of teeth cannot be determined, gear ratio can be measured by the
number of rotations on the driven and driving axles.

Idler Gears

Gears can be inserted between the driving and driven gears. These are called idler gears, and
they have no effect on the robot’s gear ratio because their gear ratio contributions always cancel
themselves out.

However, idler gears do reverse the direction of spin. Normally, the driving gear and the driven
gear would turn in opposite directions. Adding an idler gear would make them turn in the same
direction. Adding a second idler gear makes them turn in opposite directions again.

Linear Motion

Using a rack and pinion is one of the best
ways to articulate a linear movement. This is
known as a “rack and pinion linear slide.”

Outer Linear Slide

Linear motion involves an
object moving from one point to
another in a straight line.
Rotational motion involves an
object rotating about an axis.

Outer Linear
Slide

Lifts

A lift is a device that extends upwards.

The Extension Lift is one type of lift and can be achieved different ways:

Rack & Pinion Chain Winch

Outer Linear
Slide

Extension lifts can also be multi-stage to achieve greater height.

Continuous Rigging Cascade Rigging

Outer Linear
Slide

The Scissor Lift is another type of lift. When the bottom of the
scissors is pulled together it extends upwards. In this example a
rack and pinion pulls the bottom of the scissors together.

SENSORIAL.

The Sensor
Subsystem gives
the robot the
ability to detect
various things in its
environment. The
sensors are the
“eyes and ears” of
the robot, and can
even enable the
robot to function
independently of
human control.

SensorialAnalog vs. Digital
An

al
og

States
Analog sensors communicate with the
Microcontroller by sending it an electrical
voltage along a wire. By measuring where the
sent voltage falls between zero and maximum
voltage, the Microcontroller can interpret the
voltage as a numeric value for processing.
Analog sensors can therefore detect and
communicate any value in a range of numbers.

Range of
numerical
values

Difficulty sending
and maintaining
an exact, specific
voltage on a wire
in a live circuit.
Less reliable
than Digital.

Weakness

Di
gi

ta
l

States
A digital sensor sends a voltage, just like an
analog sensor, but instead of sending a voltage
between zero and maximum, it will send only
zero OR maximum. If the Microcontroller
detects a voltage that is above a guaranteed
Low or below a guaranteed High the results
cannot be determined, it can be reported as a
High or Low.

HIGH or
LOW

Can only indicate
two values rather
than a whole
range.

Weakness

SensorialPrimitive vs. “Smart” Hardware

Starting in 2018, the VEX robot system has been shifting away from a primitive, low-level hardware design in
turn for hardware that is more sophisticated. Consequently, there is a line between hardware.

Primitives “Smart” Hardware
The smallest most fundamental unit of hardware of a specific
function in a robot.

Term used by the VEX robot system for hardware that uses the RJ-11
interface. This type hardware is more complex as it uses an
collection of primitives to serve a more broad function.

Light Sensor Infrared Sensor Ultrasonic Sensor

Potentiometer Shaft Encoder 393 Motor

Vision Sensor

“Smart” Motor

SensorialThe Microcontroller

V5 Robot Brain Cortex Microcontroller

Motor Ports Use any of the 21 Smart Ports 10
Tether Ports Use any of the 21 Smart Ports remove radios, use USB cable
Digital Ports Use any of the 8 built-in 3-Wire Ports 12
Analog Ports Use any of the 8 built-in 3-Wire Ports 8

VEXos Processor
One Cortex A9 at 667 MHz
Two Cortex M0 at 32 MHz each
One FPGA1

ARM7

User Processor One Cortex A9
1333 Million Instructions per second (MIPS)

Cortex M3
90 MIPS

Ram 128 MBytes 0.0625 MBytes
Flash 32 MBytes 0.375 MBytes
User Program Slots 8 1
USB 2.0 High Speed (480 Mbit/s) Full Speed (12 Mbit/s)
Color Touch Screen 4.25”, 480 x 272 pixels, 65k colors
Expansion microSD up to 16 GB, FAT32 format
Wireless VEXnet 3 and Bluetooth 4.2 VEXnet 2
System Voltage 12.8 V 7.2 V

The Microcontroller is the
“brain” of the robot. It’s a
fully programmable device,
and is what enables motors,
sensors, an LCD screen, and
remote control signals to be
connected. One of two can
be used in a single robot.

SensorialThe Cortex Microcontroller

Inside of the Cortex, there are two separate processors; a
user processor handles program execution, and a master
processor controls lower-level operations, like motor control
and radio communication. Downloading the written programs
to the Microcontroller uses a USB A-to-A cable as shown on
the left.

Plugged into computer for programming two motors.

SensorialWiring Up the Cortex Microcontroller

Analog Inputs
Used by any sensors that provide a
range of values. Examples include:
● Potentiometers
● Light sensors
● Line followers
● Accelerometers

Digital Inputs/Outputs
Digital ports are available for
digital input signals. Examples
include:
● Bumper switches
● Limit switches
● Ultrasonic range finders
● Optical shaft encoders.

Motor Outputs
● 2-wire motors and flashlights

can be directly connected and
controlled in ports 1 and 10.

● 3-wire motors and servos can
be directly connected and
controlled in ports 2 through 9.

● 2-wire motors and flashlights
can be connected to ports 2
through 9 using a Motor
Controller 29.

Interrupts
Digital inputs designed for high
priority signals that need
immediate attention from the
Microcontroller. These are used
with some of the advanced
sensors of the Robot Design
System, such as the following:
● Ultrasonic Range Finder
● Quadrature Shaft Encoder

Speaker Output
For connecting a single speaker.
Enables the robot to play tones,
sounds and wave (.wav) sound
files.

SensorialThe V5 Robot Brain

V5 uses a technology called
“Centralized Intelligence”, which
provides the user processor
with all sensor information. All
“Smart” Sensors have their own
processor, which allows them to
simultaneously collect and
process data as fast as possible.
New information is
instantaneously sent to the user
processor’s high speed local

RAM without interrupting the processor. Each time a line of code
calls for sensor data as a user’s program runs, such as motor
position, the most recent calculation is instantly accessed from
memory.Plugged into computer for programming two “Smart” motors.

See all connected devices on one
screen

SensorialWiring Up the V5 Robot Brain

RJ-11

3-Pin Ports
3-Wire ports are multi-purpose. Any 3-Wire port can be a digital
input, digital output, analog input, or PWM motor control. This
enables the use of primitives:
● Bumper switches
● Limit switches
● Potentiometers
● Shaft Encoders
● Ultrasonic Sensors
● Light Sensors
● Infrared Sensors
● Accelerometers
● Gyroscopes
● 393 Motors

The V5 Robot Brain has 21 Smart Ports available
which enables the use of “Smart” hardware. Each
of these are equipped with a digital circuit breaker,
called an eFuse, that allow for short circuit
protection without limiting motor performance.

SensorialBumper Switch

The bumper sensor is a physical switch. It tells the robot
whether the bumper on the front of the sensor is being
pushed in or not.

When the switch is not being pushed in, the sensor
maintains a digital HIGH signal on its sensor port. This High
signal is coming from the Microcontroller. When an external
force (like a collision or being pressed up against a wall)
pushes the switch in, it changes its signal to a digital LOW
until the switch is released.

Pressed = 1 (or true)

Unpressed = 0 (or false)

SensorialLimit Switch

The limit switch sensor is a physical switch. It can tell the
robot whether the sensor’s metal arm is being pushed down
or not.

 When the limit switch is not being pushed in, the sensor
maintains a digital HIGH signal on its sensor port. This High
signal is coming from the Microcontroller. When an external
force (like a collision or being pressed up against a wall)
pushes the switch in, it changes its signal to a digital LOW
until the limit switch is released.

Pressed = 1 (or true)

Unpressed = 0 (or false)

SensorialUltrasonic Sensor

“Ultrasonic” refers to very high-frequency sound – sound
that is higher than the range of human hearing. Sonar, or

“Sound Oriented Navigation And Ranging,” is an application
of ultrasonic sound that uses propagation of these high

frequency sound waves to navigate and detect obstacles.
The ultrasonic sensor determines the distance to a

reflective surface by emitting high-frequency sound waves
and measuring the time it takes for the echo to be picked up

by the detector.

Distance to object = ½ (speed of sound) x (round trip delay)

SensorialLight Sensor

The light sensor uses a Cadmium Sulfoselenide photoconductive
photocell, or CdS cell for short. The light sensor does what you think; it
detects changes in light level. A low value (around 0) corresponds to
very bright light, and a high value (around 255) corresponds to
darkness.

SensorialPotentiometer

The Potentiometer is used to measure the angular
position of the axle or shaft passed through its center.
The center of the sensor can rotate roughly 265
degrees and outputs values ranging from 0-1023 to
the Microcontroller. This measurement can help to
understand the position of robot arms, or other
mechanisms.

CAUTION
 When mounting the Potentiometer on your robot, ensure that the range of motion of the rotating shaft does not exceed
that of the sensor. Failure to do so may result in damage to your robot and the Potentiometer. The arcs provide flexibility
for the orientation of the Potentiometer, allowing the full range of motion to be utilized more easily.

Instructions for mounting
the Potentiometer

SensorialOptical Shaft Encoder

Basic Optical Shaft Encoders are commonly used for position and motion sensing. Basically, a disc with a pattern of
cutouts around the circumference is positioned between an LED and a light detector; as the disc rotates, the light from the
LED is blocked in a regular pattern. This pattern is processed to determine how far the disc has rotated. If the disc is then
attached to a wheel on a robot, it is possible to determine the distance that wheel traveled, based on the circumference of the
wheel and the number of revolutions it made.

 The Encoder contains two
optical sensors making it
quadrature. This allows the
sensor to detect if the internal
disk is spinning clockwise or
counterclockwise and increases
the resolution to 360 counts per
revolution (2 count intervals).
Two output channels (wires) are
needed to transmit its sensor
data.

(Only Channel 1 is connected)

The term quadrature refers to the
situation where there are two output

channels; that is, two square waves 90
degrees out of phase with each other,

being outputted by the unit.

SensorialV5 “Smart” Motor

Inside the motor are gears, an encoder, modular gear cartridge,
circuit board, and thermal management components. Users can control
the motor’s direction, speed, acceleration, position, and torque limit. The
motor’s internal circuit board has a full H-Bridge and its own Cortex M0
microcontroller to measure position, speed, direction, voltage, current,
and temperature.

Cross section of a V5
“Smart” Motor

Feedback data in motor
dashboard

SensorialV5 Vision Sensor

At its most basic mode, the sensor tells you where a colored
object is located. The location's X value gives you the right and left
position. When the camera is tilted down, the Y value gives you the
distance to the object, with a little basic trigonometry on your part.
The Vision Sensor combines a dual ARM Cortex M4+M0 processor,
color camera, WiFi, and USB into a single smart sensor.

The sensor can be trained to locate objects by color.
Every 200 milliseconds, the camera provides a list of
the object found matching up to eight unique colors.
The object’s height, width, and location is provided.
Multi-colored objects can also be programmed,
allowing color codes to provide new information to
the robot.

Sample image location, six colors

SensorialSense, Plan, Act (SPA)

1.

2.

3.

Program running
on the robot

Robotic Engineers use
the Sense-Plan-Act
concept to build robust
robots that can operate in
numerous environments,
independent of human
control.

1. SENSE
The robot needs the appropriate

hardware to sense important things about
its environment, like the presence of
obstacles or navigation aids.

2. PLAN
The robot needs to take the sensed data

and figure out how to respond
appropriately to it, based on a pre-existing
strategy. This pre-existing strategy is called
“behavior.” Behavior is added by
programming the Microcontroller.

3. ACT
Finally, the robot must actually act to

carry out the actions that the plan calls for.

SensorialProgramming the Robot

RobotC is a C Programming
Language for robotics. RobotC is also
the name of the code editor that’s
used to write procedural code that is
executed by the VEX Cortex
microcontroller. The RobotC Natural
Language API contains all the
commands necessary to add
behavior.

C/RobotC

Two options exist for giving a robot behavior depending on which microcontroller used.

C++/VEX Coding Studio

VEX Coding Studio is an unlimited
programming environment with all
the capabilities of the VEX V5 Brain.
Users have a full Industry Standard
C++ environment available.

3. How to Program

RobotC and the Cortex Microcontroller

Variables
Variables are places to store values (such as sensor readings) for later use, or for use in

calculations. There are three main steps involved in using a variable:

Declaration
The variable is created by specifying its type,
followed by its name. Here, it is a variable named
speed that will store an integer.
Assignment
The variable is assigned a value using a ‘=’. The
variable speed now contains the integer value 75.
Use
The variable can now “stand in” for any value of
the appropriate type, and will act as if its stored
value were in its place.

Rules for Variable Types
• You must choose a data type that is appropriate for the value you
want to store

Boolean Logic

Comparison Operators Logical Operators More narrow,
complicated conditions

If Statements
An if-Statement allows your robot to make a decision. When your robot reaches an if Statement in the program,

it evaluates the condition contained between the parenthesis. If the condition is true, any commands between the
braces are run. If the condition is false, those same commands are ignored

While Loops
A while loop is a structure which allows a section of code to be repeated

as long as a certain condition remains true.

Functions

Declare Function

Call Function

Parameterized Function (Parameterized) Return
Function

Declare Parameter
A parameter is

declared similar to a
variable (type & name)

Use Parameter
The parameter value

behaves like a
“placeholder”

 Call function with
parameter

Declare Return Type
Indicate what type of

value it will return

Return Value
Note the value that will

be returned.
 Call function with

parameter

A function is a group of statements that are run as a single
unit when the function is called from another location.

Parameters are a way of passing information into a
function. That value will typically influence how the
function runs. It may help to think of the parameters as
placeholders – all parameters must be filled in with real
values when the function.

Not all functions are declared “void”. Sometimes a task
might need information back out of the function at the end.
The function will “return” a value, causing it to behave as if
the function call itself were a value in the line that called it.

Function

SU
B

ST
IT

U
TI

O
N

S

Switch Case
The switch-case command is a decision-making statement which chooses commands to

run from a list of separate “cases”. A single “switch” value is selected and evaluated, and
different sets of code are run based on which “case” the value matches.

Switch statement
The “switch” line designates the value that will be
evaluated to see if it matches any of the case.

Case statement
The first line of a case includes the word “case” and
a value. If the value of the “switch” variable
(turnVar) matches this case value (1), the code
following the “case” line will run.

Commands
These commands belong to the case “1”, and will
run if the value of the “switch” variable (turnVar) is
equal to 1.

Break statement
Each “case” ends with the command break;

Default case statement
If the “switch” value above did not match any of the
cases presented by the time it reaches this point,
the “default” case will run.

Timers
Timers are very useful for performing a more complex behavior for a certain period of time.

Clear the Timer
Clearing the timer resets and starts the timer. You can choose to reset any of the
timers, from T1 to T4.

Timer in the (condition)
This loop will run “while the timer’s value is less than 3 seconds”, i.e. less than 3
seconds have passed since the reset. The line tracking behavior inside the
{body} will continue for 3 seconds.

Reserved Words
Reserved words (also known as “keywords”) are provided directly by the RobotC Programming Language. Because

they are a feature of the language itself, they will always be accessible, even without the Natural Language API.

MOTORS

Reserved Words
TIMING

Reserved Words
TIMING

Reserved Words
SOUND

RADIO CONTROL

Reserved Words
MISCELLANEOUS

Reserved Words
CONTROL STRUCTURE

Reserved Words
DATA TYPES

Reserved Words
DATA TYPES

Using the Joystick Controller in ROBOTC

http://www.youtube.com/watch?v=_JyNHP05FSQ

VEX Code Studio and the V5 Robot Brain

