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Welcome to...



http://www.youtube.com/watch?v=_JVQOiw_OUU


A robot is a programmable 
mechanical device that can 
perform tasks and interact with its 
environment, without the aid of 
human interaction
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1.  How to Plan



The Design Process
● Create a Design Brief

(shown on the next slide)

● Research
● Brainstorm
● Select an approach

● Create detailed design 
solution (design doc)

● Create a technical 
drawing

● Construct the robot
● Program robot behavior
● Iterative development

● See if the solution actually 
works
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https://curriculum.vexrobotics.com/curriculum/intro-to-engineering.html
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DRAFT A DESIGN BRIEF.

Problem Statement
Robotic Engineers need a quick and easy way to confirm the 
working functionality of all programmable robotic components 
before they are deployed on a project.

Design Statement
Design a tool that can accomodate all common programmable 
robotic components including motors for proper testing of 
functionality.

Criteria
1. Robust
2. Reusable
3. Expandable

The problem statement clearly and 
concisely identifies the problem.

A problem statement must never imply 
or state a solution. The solution is not 

the problem.

The design statement challenges the 
engineer to take action to address the 

need and to solve the problem. 

A good design statement should not 
unintentionally bias the engineer’s 
creative thought process by using 

terminology that suggests an already 
existing solution. 



Free-Form Brainstorming Method

Rules
● No criticism allowed
● Work for quantity
● Welcome piling-on
● Allow free-for-all

Dysfunctions
● Utilizing a poor design brief 
● Assuming there is only one right answer
● Getting hooked on the first solution
● Considering ideas from only one or two team 

members
● Feeling too anxious to finish
● Becoming frustrated by lack of success 
● Getting hooked on a solution that almost works

BRAINSTORM.



A new engineer will change the code and break 
something because they don’t know the context that came 
before; engineers will overlap, working on similar 
problems without realizing it; and significant time 
(particularly for the senior engineers untangling the mess) 
will be wasted.

The Technical Design Review System has been the 
most successful method of correspondence at Google. It 
uses design documents and discussions for keeping 
engineering teams healthy, communicating clearly, and 
effective even as they absorb more people and projects.

SYSTEM
THE TECHNICAL DESIGN REVIEW

Design DOC Design Review

Design DOC Design Review

Design DOC Design Review

Design DOC Design Review

SOLUTION

[3]

https://firstround.com/review/making-engineering-team-communication-clearer-faster-better/


Example Design Doc

AUTHOR DESIGN DOCS.

Design documents describe, scope, and approve projects or features.

As a team gets bigger and 
starts working on multiple 
facets of a product, the 
right hand stops knowing 
everything the left hand is 
doing. Code and systems 
can conflict if people aren’t 
able to understand 
everything that’s going on. 
Design docs serve as a 
single place that can be 
discussed, consulted and 
understood team-wide.

If catalogued historically, 
they can be the best way 
for new engineers to get 
up to speed on why a 
product or feature was 
built, why it operates a 
certain way, what 
experiments were tried, 
and why certain decisions 
were made.
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This format acts as an important forcing function for an engineer to have conversations with other 
members of the team who may be impacted or have input. As a byproduct, communication flows better, 
bad ideas get weeded out sooner, and any negative surprises get nipped in the bud.

Background
Background on the problem you're solving. Why does 
it need to be solved? What other systems, features or 
products touch it? Who should be involved 
throughout?

Design goals
Requirements and goals of the project. This should 
also include numbers like traffic assumptions, usage, 
uptime requirements, etc.

System diagram
Diagram of all the binaries, databases and third-party 
services that this design touches. Having a visual 
helps many folks get the high-level picture and 
understand what's being impacted a lot more easily.

Design summary
Summary of the solution in a paragraph or two. This should 
not go on too long; it’s meant to paint a quickly and easily 
accessible picture of what’s being built.

Design details
Where the actual specifics of the design are listed out. This 
can include a variety of things from detailing 
subcomponents, code locations, testing strategies, 
internationalization, scaling tactics, etc.

Tradeoffs made
This is a great place for disclaimers on why certain choices 
are being made, what any negative implications might look 
like, limitations being taken into account, any technical debt 
that might be earned along the way, and changes that may 
need to be made in the future as a result.



DISCUSS.

Once a design document has been completed, it’s time for its presentation.
First, choose a moderator and note taker for the discussion. They should be neutral parties with no emotional stake in 

what’s be presented (but an above average aptitude for guiding and following conversations). 
Then, send out the design doc along with a blank Google doc for questions and comments. The questions will be the 

agenda of the review and allow the optimization of people’s time by diving straight into the issues.

“Everyone is welcome to sit and listen, but there's no talking in the meeting unless you’ve read the design 
doc. The moderator will jump in and cut off questions if the answer is in the doc. We do this so we don't 
waste people's time. We have X people in the room, so let’s make the most of it.”

As a consequence of this rule, many people will skim through the doc in the minutes right before the meeting 
— better late than never.

“We're here to give the next 15 minutes to this product/feature with all of our attention. You'll appreciate 
people doing the same for you when you present a design doc in the future.”

“The moderator will keep things moving and might ask for specific discussions to be followed up offline. 
Again, this is to make the most of the group's time. Hold non-on-topic questions until the end, but feel free to 
jump in with any questions that pertain to the current discussion.”



2.  How to Build



THE ROBOT DESIGN SYSTEM

}Structure

Motion

Sensorial

Subsystem

Subsystem

Subsystem



STRUCTURE.

The Structural  
Subsystem  of the 
robot is  responsible 
for  physical 
support.  It holds 
everything  in place, 
and is,  in effect, the  
durable “skeleton”  
of the robot to  
which all the other  
subsystems are  
attached.



Structure
The parts in the Structure Subsystem form the base of every robot.  These parts are the “skeleton” of 

the robot to which all other parts are attached.  This subsystem consists of all the main structural 
components in the Design System including all the metal components and hardware pieces.  These pieces 
connect together to form the “skeleton” or frame of the robot. 
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https://www.vexrobotics.com/vexedr/products/accessories/structure


Structure

Metal components can be directly attached together using 8-32 screws and nuts. Screws come in a 
variety of lengths and can be used to attach multiple thicknesses of metal together, or to mount other 
components onto structural pieces.

Screws

8-32 Screws

Size 8-32

 The primary screws used to build robot structure.

Size 6-32

 Smaller screws which are used for special cases like mounting 
legacy motors and motion subsystem components.



Structure
When using screws to attach things together, there are three types of nuts which can be used.

Nuts

Nylock 
Nut
Have a plastic insert in them which 
will prevent them from unscrewing. 

These nuts will not come off due to 
vibration or movement.

Always use on moving components.

KEPS 
Nut
Have a ring of “teeth” on one side of 
them. These teeth will grip the piece they 
are being installed on. 

These nuts are installed with the teeth 
facing the structure.

Regular 
Nut
Have no locking feature.

May loosen up over time, especially 
when under vibration or movement.  

Very thin and can be used in some 
locations where it is not practical to 
use a Nylock or KEPS nut.



Structure
Components can also be offset from 

each other using 8-32 threaded standoffs. 
Standoffs come in a variety of lengths and 
work great for mounting components as well 
as for creating structural beams.

Standoffs

8-38 Standoffs

When designing a robot’s structure, it is important to think about making it strong and robust while 
still trying to keep it as lightweight as possible.  Sometimes overbuilding can be just as detrimental as 
underbuilding.  

The frame is the skeleton of the robot and should be designed to be integrated cleanly with the robot’s 
other components.  The overall robot design should dictate the chassis, frame, and structural design; not 
vice-versa.

Design is an iterative process; experiment to find out what works best for a given robot.

Typical use case for standoffs



StructureADDITIONAL TOPICS IN STRUCTURE

Center of Gravity

Support Polygon

Achieving Stability

Exposure & Vulnerability



Center of Gravity

The “average position” of all the weight on the robot. 
Because it is an average of both weight and position, 
heavier objects count more than lighter ones in 
determining where the center of gravity is, and pieces 
that are farther out count more than pieces that are near 
the middle.

Support Polygon

The imaginary polygon formed by connecting the 
points where your robot touches the ground (usually the 
wheels). It varies  by design, but there is always one 
support polygon in any stable configuration.

Stability

The robot will be most stable when the center of gravity 
is centered over the support polygon.



Inappropriate center of gravity
The robot’s center of gravity is no longer over the support polygon. 
The robot falls over as soon as it starts the ramp.

The Center of 
Gravity is higher 
because of the 
new weight added 
to the top of the 
robot

Appropriate center of gravity
The robot’s center of gravity 
is closer to the ground.

The Center of Gravity is 
now lower because the 
weight is mounted lower



Exposure & Vulnerability

Robot components that can be damaged are well shielded and inside robot structure. Route 
wires inside the robot and away from all moving components.



MOTION.

The Motion Subsystem of 
the robot is responsible 
for exactly that, motion. It 
includes both the motors 
that generate motion, and 
the wheels and gears that 
transfer and transform 
that motion into the 
desired forms. With the 
Structural Subsystem as 
the robot’s skeleton, the 
Motion Subsystem is its 
muscle.



MotionThe Square Shaft

Most of the motion components use a square hole in their hub which fits 
tightly on square shafts.  This square hole – square shaft system transmits torque.

Gear and Shaft

The square shaft has rounded corners which allow it to spin 
easily in a round hole.  This allows the use of simple bearings made 
from Delrin (a slippery plastic).  The Delrin bearing will provide a 
low-friction piece for the shafts to turn in.

Delrin Bearing



MotionActuators

The key component of any motion system is an 
actuator. An actuator is something which causes a 
mechanical system to move. There are two types of 
actuators: motors and servos. Both of them have 
different use cases.

Each motor and servo comes with a square 
socket in its face, designed to connect to the square 
shafts. By simply inserting a shaft into this socket it is 
easy to transfer torque directly from a motor into the 
rest of the Motion Subsystem

An Actuator (Both appear the same)

ServoMotor
A servo rotates its 
shaft to a set angular 
position, between 0 
and 120 degrees and 
holds it there for as 
long as it’s receiving 
power.

A standard motor 
spins its shaft around 
and around for as 
long as it’s receiving 
power.

PROTECTING ACTUATORS FROM ABNORMAL SHOCK-LOADS

Gears can break in some applications when an actuator is under significant load, 
over a short duration of time (a shock-load). Equipping the actuator with a clutch 
will prevent this from happening when an abnormal shock-load is applied. The 
clutch will absorb some of the energy in these situations by “popping” and giving 
way. This will protect the actuator.



MotionSpacers & Collars

The Motion Subsystem also 
contains parts designed to keep pieces 
positioned on a shaft.  These pieces 
include spacers and collars.
Collars slide onto a shaft, and can be 
fastened in place using a setscrew.  
Before tightening the setscrew, it is 
important to slide the Collars along the 
square shafts until they are next to a fixed 
part of the robot so that the collar 
prevents the shaft from sliding back and 
forth



MotionGears & Wheels

 The primary way to transfer motion is through the 
use of spur gears.  Spur gears transfer motion 
between parallel shafts, and can also be used to 
increase or decrease torque through the use of gear 
ratios.

 The last step in the drive train (series of gears 
transferring torque for the purpose of mobility), 
after the motors and gears, is the wheels. 

Bigger tires give you slower acceleration, while 
smaller tires give you faster acceleration.



MotionADDITIONAL TOPICS IN MOTION

Speed vs. Torque

Gear Ratios

Compound Gear Ratios

Gear Ratios With Non-Gear Systems

Idler Gears

Lifts

Linear Motion



Speed vs. Torque

Because a motor can only generate a set amount of power, there is an inherent trade-off 
between Torque—the force with which a motor can turn a wheel—and Speed—the rate at which 
a motor can turn a wheel.

The exact configuration of torque and speed is usually set using gears. By putting different 
combinations of gears between the motor and the wheel, the speed-torque balance will shift.

Gear Ratios

Gear ratio can be thought of as a 
“multiplier” on torque and a “divider” on 
speed. A gear ratio of 2:1 would yield 
twice as much torque as a gear ratio of 
1:1, but only half as much speed.

Gear ratio is a ratio of the number of 
teeth on a“driven” gear to the number of 
teeth on its “driving” gear.



Compound Gear Ratios

Compound gears are formed when two or more gears are on the same axle. In a compound 
gear system, there are multiple gear pairs. Each pair has its own gear ratio, but the pairs are 
connected to each other by a shared axle.

The resulting compound gear system still has a driving gear and a driven gear, and still has 
a gear ratio (now called a “compound gear ratio”).

The compound gear ratio between the driven and driving gears is then calculated by 
multiplying the gear ratios of each of the individual gear pairs.



Gear Ratios With Non-Gear Systems

Belt or chain drives are often preferred over gears when torque is needed to be transferred 
over long distances. 

When the number of teeth cannot be determined,  gear ratio can be measured by the 
number of rotations on the driven and driving axles.



Idler Gears

Gears can be inserted  between the driving and driven gears. These are called idler gears, and 
they have no effect on the robot’s gear ratio because their gear ratio contributions always cancel 
themselves out.

However, idler gears do reverse the direction of spin. Normally, the driving gear and the driven 
gear would turn in opposite directions. Adding an idler gear would make them turn in the same 
direction. Adding a second idler gear makes them turn in opposite directions again.



Linear Motion

Using a rack and pinion is one of the best 
ways to articulate a linear movement. This is 
known as a “rack and pinion linear slide.”

Outer Linear Slide

Linear motion involves an 
object moving from one point to 
another in a straight line. 
Rotational motion involves an 
object rotating about an axis.



Outer Linear 
Slide

Lifts

A lift is a device that extends upwards.

The Extension Lift is one type of lift and can be achieved different ways:

Rack & Pinion Chain Winch



Outer Linear 
Slide

Extension lifts can also be multi-stage to achieve greater height.

Continuous Rigging Cascade Rigging



Outer Linear 
Slide

The Scissor Lift is another type of lift. When the bottom of the 
scissors is pulled together it extends upwards. In this example a 
rack and pinion pulls the bottom of the scissors together.



SENSORIAL.

The Sensor  
Subsystem gives  
the robot the  
ability to detect  
various things in its 
environment. The 
sensors are the  
“eyes and ears” of  
the robot, and can 
even enable the  
robot to function  
independently of  
human control. 



SensorialAnalog vs. Digital
An

al
og

States
Analog sensors communicate with the 
Microcontroller by sending it an electrical 
voltage along a wire. By measuring where the 
sent voltage falls between zero and maximum 
voltage, the Microcontroller can interpret the 
voltage as a numeric value for processing. 
Analog sensors can therefore detect and 
communicate any value in a range of numbers.

Range of 
numerical 
values

Difficulty sending 
and maintaining 
an exact, specific 
voltage on a wire 
in a live circuit. 
Less reliable 
than Digital. 

Weakness

Di
gi

ta
l

States
A digital sensor sends a voltage, just like an 
analog sensor, but instead of sending a voltage 
between zero and maximum, it will send only 
zero OR maximum. If the Microcontroller 
detects a voltage that is above a guaranteed 
Low or below a guaranteed High the results 
cannot be determined, it can be reported as a 
High or Low.

HIGH or 
LOW

Can only indicate 
two values rather 
than a whole 
range.

Weakness



SensorialPrimitive vs. “Smart” Hardware

Starting in 2018, the VEX robot system has been shifting away from a primitive, low-level hardware design in 
turn for hardware that is more sophisticated. Consequently, there is a line between hardware.

Primitives “Smart” Hardware
The smallest most fundamental unit of hardware of a specific 
function in a robot.

Term used by the VEX robot system for hardware that uses the RJ-11 
interface. This type hardware is more complex as it uses an 
collection of primitives to serve a more broad function.

Light Sensor Infrared Sensor Ultrasonic Sensor

Potentiometer Shaft Encoder 393 Motor

Vision Sensor

“Smart” Motor



SensorialThe Microcontroller

V5 Robot Brain Cortex Microcontroller

Motor Ports Use any of the 21 Smart Ports 10
Tether Ports Use any of the 21 Smart Ports remove radios, use USB cable
Digital Ports Use any of the 8 built-in 3-Wire Ports 12
Analog Ports Use any of the 8 built-in 3-Wire Ports 8

VEXos Processor
One Cortex A9 at 667 MHz 
Two Cortex M0 at 32 MHz each 
One FPGA1

ARM7

User Processor One Cortex A9 
1333 Million Instructions per second (MIPS)

Cortex M3 
90 MIPS

Ram 128 MBytes 0.0625 MBytes
Flash 32 MBytes 0.375 MBytes
User Program Slots 8 1
USB 2.0 High Speed (480 Mbit/s) Full Speed (12 Mbit/s)
Color Touch Screen 4.25”, 480 x 272 pixels, 65k colors
Expansion microSD up to 16 GB, FAT32 format
Wireless VEXnet 3 and Bluetooth 4.2 VEXnet 2
System Voltage 12.8 V 7.2 V

The Microcontroller is the 
“brain” of the robot. It’s a 
fully programmable device, 
and is what enables motors, 
sensors, an LCD screen, and 
remote control signals to be 
connected. One of two can 
be used in a single robot.



SensorialThe Cortex Microcontroller

Inside of the Cortex, there are two separate processors; a 
user processor handles program execution, and a master 
processor controls lower-level operations, like motor control 
and radio communication. Downloading the written programs 
to the Microcontroller uses a USB A-to-A cable as shown on 
the left.

Plugged into computer for programming two motors.



SensorialWiring Up the Cortex Microcontroller

Analog Inputs
Used by any sensors that provide a 
range of values. Examples include:
● Potentiometers
● Light sensors 
● Line followers 
● Accelerometers

Digital Inputs/Outputs
Digital ports are available for 
digital input signals. Examples 
include: 
● Bumper switches
● Limit switches
● Ultrasonic range finders
● Optical shaft encoders. 

Motor Outputs
● 2-wire motors and flashlights 

can be directly connected and 
controlled in ports 1 and 10.

● 3-wire motors and servos can 
be directly connected and 
controlled  in ports 2 through 9.

● 2-wire motors and flashlights 
can be connected to ports 2 
through 9 using a Motor 
Controller 29.

Interrupts
Digital inputs designed for high 
priority signals that need 
immediate attention from the 
Microcontroller. These are used 
with some of the advanced 
sensors of the Robot Design 
System, such as the following: 
● Ultrasonic Range Finder 
● Quadrature Shaft Encoder

Speaker Output
For connecting a single speaker. 
Enables the robot to play tones, 
sounds and wave (.wav) sound 
files.



SensorialThe V5 Robot Brain

V5 uses a technology called 
“Centralized Intelligence”, which 
provides the user processor 
with all sensor information. All 
“Smart” Sensors have their own 
processor, which allows them to 
simultaneously collect and 
process data as fast as possible. 
New information is 
instantaneously sent to the user 
processor’s high speed local 

RAM without interrupting the processor. Each time a line of code 
calls for sensor data as a user’s program runs, such as motor 
position, the most recent calculation is instantly accessed from 
memory.Plugged into computer for programming two “Smart” motors.

See all connected devices on one 
screen



SensorialWiring Up the V5 Robot Brain

RJ-11

3-Pin Ports
3-Wire ports are multi-purpose. Any 3-Wire port can be a digital 
input, digital output, analog input, or PWM motor control. This 
enables the use of primitives:
● Bumper switches
● Limit switches
● Potentiometers
● Shaft Encoders
● Ultrasonic Sensors
● Light Sensors
● Infrared Sensors
● Accelerometers
● Gyroscopes
● 393 Motors

The V5 Robot Brain has 21 Smart Ports available 
which enables the use of “Smart” hardware. Each 
of these are equipped with a digital circuit breaker, 
called an eFuse, that allow for short circuit 
protection without limiting motor performance.



SensorialBumper Switch

The bumper sensor is a physical switch. It tells the robot 
whether the bumper on the front of the sensor is being 
pushed in or not.

When the switch is not being pushed in, the sensor 
maintains a digital HIGH signal on its sensor port.  This High 
signal is coming from the Microcontroller.  When an external 
force (like a collision or being pressed up against a wall) 
pushes the switch in, it changes its signal to a digital LOW 
until the switch is released.

Pressed = 1 (or true)

Unpressed = 0 (or false)



SensorialLimit Switch

The limit switch sensor is a physical switch. It can tell the 
robot whether the sensor’s metal arm is being pushed down 
or not.

 When the limit switch is not being pushed in, the sensor 
maintains a digital HIGH signal on its sensor port.  This High 
signal is coming from the Microcontroller.  When an external 
force (like a collision or being pressed up against a wall) 
pushes the switch in, it changes its signal to a digital LOW 
until the limit switch is released.

Pressed = 1 (or true)

Unpressed = 0 (or false)



SensorialUltrasonic Sensor

“Ultrasonic” refers to very high-frequency sound – sound 
that is higher than the range of human hearing. Sonar, or 

“Sound Oriented Navigation And Ranging,” is an application 
of ultrasonic sound that uses propagation of these high 

frequency sound waves to navigate and detect obstacles. 
The ultrasonic sensor determines the distance to a 

reflective surface by emitting high-frequency sound waves 
and measuring the time it takes for the echo to be picked up 

by the detector.

Distance to object = ½ (speed of sound)  x  (round trip delay) 



SensorialLight Sensor

The light sensor uses a Cadmium Sulfoselenide photoconductive 
photocell, or CdS cell for short. The light sensor does what you think; it 
detects changes in light level. A low value (around 0) corresponds to 
very  bright light, and a high value (around 255) corresponds to 
darkness.

 



SensorialPotentiometer

The Potentiometer is used to measure the angular 
position of the axle or shaft passed through its center. 
The center of the sensor can rotate roughly 265 
degrees and outputs values ranging from 0-1023 to 
the Microcontroller.  This measurement can help to 
understand the position of robot arms, or other 
mechanisms.

CAUTION
 When mounting the Potentiometer on your robot, ensure that the range of motion of the rotating shaft does not exceed 
that of the sensor. Failure to do so may result in damage to your robot and the Potentiometer. The arcs provide flexibility 
for the orientation of the Potentiometer, allowing the full range of motion to be utilized more easily.

Instructions for mounting 
the Potentiometer



SensorialOptical Shaft Encoder

Basic Optical Shaft Encoders are commonly used for position and motion sensing. Basically, a disc with a pattern of 
cutouts around the circumference is positioned between an LED and a light detector; as the disc rotates, the light from the 
LED is blocked in a regular pattern. This pattern is processed to determine how far the disc has rotated. If the disc is then 
attached to a wheel on a robot, it is possible to determine the distance that wheel traveled, based on the circumference of the 
wheel and the number of revolutions it made.

 The Encoder contains two 
optical sensors making it 
quadrature. This allows the 
sensor to detect if the internal 
disk is spinning clockwise or 
counterclockwise and increases 
the resolution to 360 counts per 
revolution (2 count intervals). 
Two output channels (wires) are 
needed to transmit its sensor 
data.

(Only Channel 1 is connected)

The term quadrature refers to the 
situation where there are two output 

channels; that is, two square waves 90 
degrees out of phase with each other, 

being outputted by the unit.



SensorialV5 “Smart” Motor

Inside the motor are gears, an encoder, modular gear cartridge, 
circuit board, and thermal management components. Users can control 
the motor’s direction, speed, acceleration, position, and torque limit. The 
motor’s internal circuit board has a full H-Bridge and its own Cortex M0 
microcontroller to measure position, speed, direction, voltage, current, 
and temperature. 

Cross section of a V5 
“Smart” Motor

Feedback data in motor 
dashboard



SensorialV5 Vision Sensor

At its most basic mode, the sensor tells you where a colored 
object is located. The location's X value gives you the right and left 
position. When the camera is tilted down, the Y value gives you the 
distance to the object, with a little basic trigonometry on your part. 
The Vision Sensor combines a dual ARM Cortex M4+M0 processor, 
color camera, WiFi, and USB into a single smart sensor.

The sensor can be trained to locate objects by color. 
Every 200 milliseconds, the camera provides a list of 
the object found matching up to eight unique colors. 
The object’s height, width, and location is provided. 
Multi-colored objects can also be programmed, 
allowing color codes to provide new information to 
the robot.

Sample image location, six colors



SensorialSense, Plan, Act (SPA)

1.

2.

3.

Program running 
on the robot

Robotic Engineers use 
the Sense-Plan-Act 
concept to build robust 
robots that can operate in 
numerous environments, 
independent of human 
control. 

1. SENSE
The robot needs the appropriate 

hardware to sense important things about 
its environment, like the presence of 
obstacles or navigation aids.

2. PLAN
The robot needs to take the sensed data 

and figure out how to respond 
appropriately to it, based on a pre-existing 
strategy. This pre-existing strategy is called 
“behavior.” Behavior is added by 
programming the Microcontroller.

3. ACT
Finally, the robot must actually act to 

carry out the actions that the plan calls for. 



SensorialProgramming the Robot

RobotC is a C Programming 
Language for robotics. RobotC is also 
the name of the code editor that’s 
used to write procedural code that is 
executed by the VEX Cortex 
microcontroller. The RobotC Natural 
Language API contains all the 
commands necessary to add 
behavior.

C/RobotC

Two options exist for giving a robot behavior depending on which microcontroller used.

C++/VEX Coding Studio

VEX Coding Studio is an unlimited 
programming environment with all 
the capabilities of the VEX V5 Brain. 
Users have a full Industry Standard 
C++ environment available.



3.  How to Program



RobotC and the Cortex Microcontroller



Variables
Variables are places to store values (such as sensor readings) for later use, or for use in 

calculations. There are three main steps involved in using a variable:

Declaration 
The variable is created by specifying its type, 
followed by its name. Here, it is a variable named 
speed that will store an integer.
Assignment 
The variable is assigned a value using a ‘=’. The 
variable speed now contains the integer value 75.
Use 
The variable can now “stand in” for any value of 
the appropriate type, and will act as if its stored 
value were in its place.

Rules for Variable Types 
•  You must choose a data type that is appropriate for the value you 
want to store 



Boolean Logic

Comparison Operators Logical Operators More narrow, 
complicated conditions



If Statements
An if-Statement allows your robot to make a decision. When your robot reaches an if Statement in the program, 

it evaluates the condition contained between the parenthesis. If the condition is true, any commands between the 
braces are run. If the condition is false, those same commands are ignored



While Loops
A while loop is a structure which allows a section of code to be repeated 

as long as a certain condition remains true. 



Functions

Declare Function 

Call Function

Parameterized Function (Parameterized) Return 
Function

Declare Parameter
A parameter is 

declared similar to a 
variable (type & name)

Use Parameter
The parameter value 

behaves like a 
“placeholder”

 Call function with 
parameter 

Declare Return Type
Indicate what type of 

value it will return

Return Value
Note the value that will 

be returned.
 Call function with 

parameter 

A function is a group of statements that are run as a single 
unit when the function is called from another location.

Parameters are a way of passing information into a 
function. That value will typically influence how the 
function runs. It may help to think of the parameters as 
placeholders – all parameters must be filled in with real 
values when the function.

Not all functions are declared “void”. Sometimes a task 
might need information back out of the function at the end. 
The function will “return” a value, causing it to behave as if 
the function call itself were a value in the line that called it.

Function
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Switch Case
The switch-case command is a decision-making statement which chooses commands to 

run from a list of separate “cases”. A single “switch” value is selected and evaluated, and 
different sets of code are run based on which “case” the value matches. 

Switch statement 
The “switch” line designates the value that will be 
evaluated to see if it matches any of the case.

Case statement 
The first line of a case includes the word “case” and 
a value. If the value of the “switch” variable 
(turnVar) matches this case value (1), the code 
following the “case” line will run.

Commands 
These commands belong to the case “1”, and will 
run if the value of the “switch” variable (turnVar) is 
equal to 1.

Break statement 
Each “case” ends with the command break;

Default case statement 
If the “switch” value above did not match any of the 
cases presented by the time it reaches this point, 
the “default” case will run.



Timers
Timers are very useful for performing a more complex behavior for a certain period of time.

Clear the Timer 
Clearing the timer resets and starts the timer. You can choose to reset any of the 
timers, from T1 to T4. 

Timer in the (condition) 
This loop will run “while the timer’s value is less than 3 seconds”, i.e. less than 3 
seconds have passed since the reset. The line tracking behavior inside the 
{body} will continue for 3 seconds.



Reserved Words
Reserved words (also known as “keywords”) are provided directly by the RobotC Programming Language. Because 

they are a feature of the language itself, they will always be accessible, even without the Natural Language API.

MOTORS



Reserved Words
TIMING



Reserved Words
TIMING



Reserved Words
SOUND

RADIO CONTROL



Reserved Words
MISCELLANEOUS



Reserved Words
CONTROL STRUCTURE



Reserved Words
DATA TYPES



Reserved Words
DATA TYPES



Using the Joystick Controller in ROBOTC

http://www.youtube.com/watch?v=_JyNHP05FSQ


VEX Code Studio and the V5 Robot Brain


